Bài tập 7.36 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức
Cho tứ diện \(OABC\) có \(OA = OB = OC = a\) và \(\widehat {AOB} = 90^\circ ;\) \(\widehat {BOC} = 60^\circ \); \(\widehat {COA} = 120^\circ \). Tính theo \(a\) thể tích khối tứ diện \(OABC\)?
Hướng dẫn giải chi tiết Bài 7.36
Ta có: \(AB = a\sqrt 2 \), \(BC = a\), \(CA = a\sqrt 3 \), tam giác \(ABC\) vuông tại \(B\).
Kẻ \(OH\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) tại \(H\).
Vì \(OA = OB = OC\) nên \(HA = HB = HC\), hay \(H\) là trung điểm của \(AC\).
Xét tam giác \(OAH\) vuông tại \(H\), theo định lí Pythagore ta tính được: \(OH = \frac{a}{2}\).
Vậy \({V_{OABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot OH = \frac{1}{3} \cdot \frac{1}{2} \cdot a\sqrt 2 \cdot a \cdot \frac{a}{2} = \frac{{{a^3}\sqrt 2 }}{{12}}{\rm{.\;}}\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 7.34 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.35 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.37 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.38 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.39 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.40 trang 41 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT