YOMEDIA
NONE

Bài tập 2.3 trang 33 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 2.3 trang 33 SBT Toán 11 Tập 1 Kết nối tri thức

Xét tính bị chặn của các dãy số sau:

a) \({u_n} = \frac{n}{{2n + 1}};\)

b) \({u_n} = {n^2} + n - 1;\)

c) \({u_n} = - {n^2} + 1\).

ATNETWORK

Hướng dẫn giải chi tiết Bài 2.3

a) Ta có: \({u_n} = \frac{n}{{2n + 1}} = \frac{{\frac{1}{2}\left( {2n + 1} \right) - \frac{1}{2}}}{{2n + 1}} = \frac{1}{2} - \frac{{\frac{1}{2}}}{{2n + 1}} = \frac{1}{2} - \frac{1}{{2\left( {2n + 1} \right)}}\).

Suy ra \(\frac{1}{3} \le {u_n} \le \frac{1}{2}\) với mọi \(n \ge 1\). Do đó, \(\left( {{u_n}} \right)\) là dãy số bị chặn.

b) Ta có: \(n - 1 \ge 0\) với mọi \(n \ge 1\). Do đó, \({u_n} = {n^2} + n - 1 \ge 1\) với mọi \(n \ge 1\). Do đó, dãy số \(\left( {{u_n}} \right)\) bị chặn dưới bởi 1 với mọi \(n \ge 1\).

c) Ta có: \({u_n} = - {n^2} + 1 \le 1\) với mọi \(n \ge 1\). Do đó, \(\left( {{u_n}} \right)\) là dãy số bị chặn trên bởi 1 với mọi \(n \ge 1\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 2.3 trang 33 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON