Bài tập 2.5 trang 34 SBT Toán 11 Tập 1 Kết nối tri thức
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi hệ thức truy hồi: \({u_1} = 1,{u_{n + 1}} = {u_n} + \left( {n + 1} \right)\).
a) Mỗi số hạng của dãy số này gọi là một số tam giác. Viết bảy số tam giác đầu.
b) Biết rằng \(1 + 2 + ... + n = \frac{{n\left( {n + 1} \right)}}{2}\). Hãy chứng tỏ công thức của số hạng tổng quát là: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}\).
c) Chứng minh rằng \({u_{n + 1}} + {u_n} = {\left( {n + 1} \right)^2}\), tức là tổng của hai số tam giác liên tiếp là một số chính phương.
Hướng dẫn giải chi tiết Bài 2.5
a) Bảy số tam giác đầu là:
\({u_1} = 1,\;{u_2} = 1 + \left( {1 + 1} \right) = 3,\;{u_3} = 3 + \left( {2 + 1} \right) = 6,\;{u_4} = 6 + \left( {3 + 1} \right) = 10,\;{u_5} = 10 + \left( {4 + 1} \right) = 15,\)
\({u_6} = 15 + \left( {5 + 1} \right) = 21,{u_7} = 21 + \left( {1 + 6} \right) = 28\)
b) Ta nhận thấy: \({u_2} = 1 + 2,{u_3} = 1 + 2 + 3,{u_4} = 1 + 2 + 3 + 4,..\)
Do đó, ta dự đoán: \({u_{n + 1}} = 1 + 2 + ... + \left( {n + 1} \right) = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}\)
c) Theo công thức phần b ta có:
\({u_{n + 1}} + {u_n} = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2} + \frac{{n\left( {n + 1} \right)}}{2} = \frac{{\left( {n + 1} \right)\left( {n + 2 + n} \right)}}{2} = {\left( {n + 1} \right)^2}\)
Vậy tổng của hai số tam giác liên tiếp là một số chính phương.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 2.3 trang 33 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.4 trang 34 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.6 trang 34 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.7 trang 34 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.8 trang 34 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.9 trang 35 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.10 trang 35 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT