YOMEDIA
NONE

Bài tập 1.26 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.26 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức

Giải các phương trình sau:

a) \(\sin \left( {2x + {{15}^0}} \right) + \cos \left( {2x - {{15}^0}} \right) = 0\)

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0\)

c) \(\tan x + \cot x = 0\)

d) \(\sin x + \tan x = 0\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 1.26

a) Ta có: \(\sin \left( {2x + {{15}^0}} \right) + \cos \left( {2x - {{15}^0}} \right) = 0 \Leftrightarrow \sin \left( {2x + {{15}^0}} \right) + \sin \left( {{{90}^0} - 2x + {{15}^0}} \right) = 0\).

\( \Leftrightarrow 2\sin {60^0}.cos\left( {2x - {{45}^0}} \right) = 0 \Leftrightarrow cos\left( {2x - {{45}^0}} \right) = cos{90^0}\)

\( \Leftrightarrow 2x - {45^0} = {90^0} + k{180^0} \Leftrightarrow x = \frac{{{{135}^0}}}{2} + k{90^0}\left( {k \in \mathbb{Z}} \right)\)

b) Ta có: \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0 \Leftrightarrow 2\cos \left( {\frac{{5x}}{2} + \frac{\pi }{{60}}} \right)\cos \left( {\frac{x}{2} - \frac{{11\pi }}{{60}}} \right) = 0\).

\( \Leftrightarrow \left[ \begin{array}{l}\cos \left( {\frac{{5x}}{2} + \frac{\pi }{{60}}} \right) = 0\\\cos \left( {x - \frac{{11\pi }}{{60}}} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{{5x}}{2} + \frac{\pi }{{60}} = \frac{\pi }{2} + k\pi \\\frac{x}{2} - \frac{{11\pi }}{{60}} = \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{29\pi }}{{150}} + k\frac{{2\pi }}{5}\\x = \frac{{41\pi }}{{30}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

c) Điều kiện: \(x \ne k\pi \).

\(\tan x + \cot x = 0 \Leftrightarrow \tan x + \frac{1}{{\tan \,x}} = 0 \Leftrightarrow {\tan ^2} + 1 = 0\)

Vì \({\tan ^2} + 1 > 0\) với mọi \(x \ne k\pi \).

Do đó, phương trình đã cho vô nghiệm.

d) Điều kiện: \(x \ne \frac{\pi }{2} + k\pi \).

\(\sin x + \tan x = 0 \Leftrightarrow \sin x + \frac{{\sin x}}{{\cos x}} = 0 \Leftrightarrow \frac{{\sin x\cos x + \sin x}}{{\cos x}} = 0 \Leftrightarrow \sin x\left( {\cos x + 1} \right) = 0\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.26 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON