Hoạt động 5 trang 52 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Xét (P) là một parabol với tiêu điểm F và đường chuẩn \(\Delta \). Gọi p là tham số tiêu của (P) và H là hình chiếu vuông góc của F trên \(\Delta \). Chọn hệ trục tọa độ Oxy có gốc O là trung điểm của HF, tia Ox trùng tia OF (H.7.27)
a) Nêu tọa độ của F và phương trình của \(\Delta\)
b) Giải thích vì sao điểm M(x; y) thuộc (P) khi và chỉ khi \(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}=\left | x+\frac{p}{2} \right |\)
Hướng dẫn giải chi tiết
Phương pháp giải
+) Giả sử M thuộc (P), ta chứng minh \(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}=\left | x+\frac{p}{2} \right |\).
+) Giả sử \(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}=\left | x+\frac{p}{2} \right |\), ta chứng minh M thuộc (P).
Lời giải chi tiết
a) Do O là trung điểm HF, mà HF = p (tham số tiêu của (P)) nên tọa độ của F là: F\(\left ( \frac{p}{2};0 \right )\).
Đường thẳng \(\Delta \) đi qua H\(\left ( \frac{-p}{2};0 \right )\) và vuông góc với trục Ox nên có phương trình: \(x= \frac{-p}{2}\)
b)
Ta có: MF = \(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}\)
d(M, \(\Delta \))= \(\frac{\left | x+\frac{-p}{2} \right |}{\sqrt{1^{2}+0}}=\left | x+\frac{-p}{2} \right |\)
+) Giả sử M thuộc (P), ta chứng minh \(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}=\left | x+\frac{p}{2} \right |\). Thật vậy:
M thuộc (P) => MF = d(M, \(\Delta \))
<=> \(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}=\left | x+\frac{p}{2} \right |\)
+) Giả sử \(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}=\left | x+\frac{p}{2} \right |\), ta chứng minh M thuộc (P). Thật vậy:
\(\sqrt{\left ( x-\frac{p}{2} \right )^{2}+y^{2}}=\left | x+\frac{p}{2} \right |\) => MF = d(M, \(\Delta \))
Vậy M thuộc (P).
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Luyện tập 4 trang 52 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Hoạt động 4 trang 52 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Vận dụng 2 trang 53 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Vận dụng 3 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.19 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.20 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.21 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.22 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.23 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.24 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.25 trang 56 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.28 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.29 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.30 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.31 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.32 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.33 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.34 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.35 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.36 trang 47 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.37 trang 47 SBT Toán 10 Kết nối tri thức tập 2 - KNTT