YOMEDIA
NONE

Giải bài 7.29 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT

Giải bài 7.29 trang 46 SBT Toán 10 Kết nối tri thức tập 2

Cho hypebol \(\left( H \right)\)có phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{20}} = 1\). Tìm tiêu điểm và tiêu cự của hypebol

ATNETWORK

Hướng dẫn giải chi tiết Bài 7.29

Phương pháp giải

Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)

Lời giải chi tiết

Trong phương trình chính tắc của \(\left( H \right)\) ta có: \(\left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 20\end{array} \right. \Rightarrow c = \sqrt {{a^2} + {b^2}}  = 6\)

Vậy \(\left( H \right)\) có hai tiêu điểm là \({F_1}\left( { - 6;0} \right),{F_2}\left( {6;0} \right)\) và có tiêu cự là \(2c = 12\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7.29 trang 46 SBT Toán 10 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON