Hoạt động 3 trang 28 SGK Toán 10 Kết nối tri thức tập 1
Xét biểu thức F(x, y) = 2x + 3y với (x; y) thuộc miền tam giác OAB ở HĐ2. Toạ độ ba đình là O(0, 0), A(150, 0) và B(0; 150) (H.2.5).
a) Tính giá trị của biểu thức F(x; y) tại mỗi đỉnh O, A và B.
b) Nêu nhận xét về dấu của hoành độ x và tung độ y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB.
c) Nêu nhận xét về tổng x + y của điểm (X; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị lớn nhất của F(x, y) trên miền tam giác OAB.
Hướng dẫn giải chi tiết
Phương pháp giải
a) Thay tọa độ điểm O, A, B vào F(x;y) và tính giá trị.
b) Lấy một điểm bất kì trong miền tam giác OAB.
Xác định dấu:
+ So sánh x với 0
+ So sánh y với 0
Đánh giá biểu thức F(x;y) dựa vào dấu của x và y, từ đó tìm giá trị nhỏ nhất của biểu thức.
c)
Dựa vào biểu thức
Giá trị lớn nhất: Tách 2x+3y =2.(x+y)+y và dựa vào việc đánh giá x+y và y ở bước trên để tìm giá trị lớn nhất.
Hướng dẫn giải
a) Thay tọa độ điểm O, A, B vào F(x;y) ta được:
F(0;0)=2.0+3.0=0
F(150;0)=2.150+3.0=300
F(0;150)=2.0+3.150=450.
b) Lấy một điểm bất kì trong miền tam giác OAB.
Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(x \ge 0\).
Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(y \ge 0\).
Vậy \(x \ge 0\) và \(y \ge 0\).
=> \(F\left( {x;y} \right) = 2x + 3y \ge 2.0 + 3.0 = 0\)
Vậy giá trị nhỏ nhất của F(x;y) trên miền OAB là 0.
c) Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(x + y \le 150\)
Như vậy với mỗi điểm trong miền tam giác OAB thì đều có tổng \(x + y \le 150\)
Quan sát miền OAB ta thấy điểm B(0;150) là điểm có tung độ lớn nhất nên mọi điểm (x;y) thuộc miền OAB đều có \(y \le 150\).
Vậy ta có: \(F\left( {x;y} \right) = 2x + 3y\)\( = 2.\left( {x + y} \right) + y\)\( \le 2.150 + 150 = 450\)
Dấu “=” xảy ra khi x+y=150 và y=150. Hay x=0, y=150.
Giá trị lớn nhất trên miền OAB là 450 tại điểm B.
-- Mod Toán 10 HỌC247
-
Biểu diễn miền nghiệm của hệ bất phương trình sau đây: \(\left\{ \begin{array}{l}x + y - 4 \le 0\\x \ge 0\\y \ge 0\end{array} \right.\)
bởi Sam sung 15/11/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Hoạt động 2 trang 27 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Luyện tập 2 trang 28 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Vận dụng trang 30 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 2.4 trang 30 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 2.5 trang 30 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 2.6 trang 30 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 2.6 trang 23 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 2.7 trang 23 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 2.8 trang 23 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 2.9 trang 23 SBT Toán 10 Kết nối tri thức tập 1 - KNTT