YOMEDIA
NONE

Giải bài 2.8 trang 23 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 2.8 trang 23 SBT Toán 10 Kết nối tri thức tập 1

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(F\left( {x;y} \right) = 4x - 3y\) trên miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \ge  - 4}\\{x + y \le 5}\\{x - y \le 5}\\{x - y \ge  - 4}\end{array}.} \right.\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 2.8

Phương pháp giải

- Vẽ hệ bất phương trình trên mặt phẳng tọa độ \(Oxy.\)

- Xác định miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \ge  - 4}\\{x + y \le 5}\\{x - y \le 5}\\{x - y \ge  - 4}\end{array}} \right.\)

- Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

Lời giải chi tiết

Xác định miền nghiệm của bất phương trình \(x + y \ge  - 4\) là nửa mặt phẳng bờ \(d:x + y =  - 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(x + y \le 5\) là nửa mặt phẳng bờ \({d_1}:x + y = 5\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(x - y \le 5\) là nửa mặt phẳng bờ \({d_2}:x - y = 5\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(x - y \ge  - 4\) là nửa mặt phẳng bờ \({d_3}:x - y =  - 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của hệ bất phương trình là: hình vuông \(ABCD\) với \(A\left( { - 4;0} \right),\)\(B\left( {\frac{1}{2};\frac{9}{2}} \right),\) \(C\left( {5;0} \right),\,\,D\left( {\frac{1}{2};\frac{{ - 9}}{2}} \right).\)

Ta có: \(F\left( { - 4;0} \right) = 4\left( { - 4} \right) - 3.0 =  - 16,\,\,F\left( {\frac{1}{2};\frac{9}{2}} \right) = 4.\frac{1}{2} - 3.\frac{9}{2} = \frac{{ - 23}}{2},\)

\(F\left( {5;0} \right) = 4.5 - 3.0 = 20,\,\,F\left( {\frac{1}{2};\frac{{ - 9}}{2}} \right) = 4.\frac{1}{2} - 3.\left( {\frac{{ - 9}}{2}} \right) = \frac{{31}}{2}.\)

Vậy giá trị lớn nhất của biểu thức là: \(F\left( {5;0} \right) = 20,\) giá trị nhỏ nhất của biểu thức là: \(F\left( { - 4;0} \right) =  - 16.\) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 2.8 trang 23 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON