Giải bài 7.14 trang 38 SBT Toán 10 Kết nối tri thức tập 2
Trong mặt phẳng \(Oxy\), cho đường thẳng \(\Delta :2x + y - 5 = 0\)
a) Viết phương trình đường thẳng d đi qua điểm \(A\left( {3;1} \right)\) và song song với đường thẳng \(\Delta \)
b) Viết phương trình đường thẳng k đ qua điểm \(B\left( { - 1;0} \right)\) và vuông góc với đường thẳng \(\Delta \)
c) Lập phương trình đường thẳng a song song với đường thẳng \(\Delta \) và cách điểm O một khoảng bằng \(\sqrt 5 \)
Hướng dẫn giải chi tiết Bài 7.14
Phương pháp giải
Cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {a;b} \right)\). Khi đó điểm M(x: y) thuộc đường thẳng \(\Delta \) khi và chỉ khi tổn tại số thực t sao cho \(\overrightarrow {AM} = t\overrightarrow u \), hay
\(\left\{ \begin{array}{l}
x = {x_0} + at\\
y = {y_0} + bt
\end{array} \right.\;\;\;\;\;\;\;\;(2)\)
Hệ (2) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số).
Lời giải chi tiết
a) d song song với đường thẳng \(\Delta \)\( \Rightarrow \overrightarrow {{n_d}} = \overrightarrow {{n_\Delta }} = \left( {2;1} \right)\)
d đi qua điểm \(A\left( {3;1} \right)\) có \(\overrightarrow {{n_d}} = \left( {2;1} \right) \Rightarrow d:2\left( {x - 3} \right) + 1\left( {y - 1} \right) = 0 \Rightarrow d:2x + y - 7 = 0\)
b) d vuông với đường thẳng \(\Delta \)\( \Rightarrow \overrightarrow {{v_d}} = \overrightarrow {{n_\Delta }} = \left( {2;1} \right) \Rightarrow \overrightarrow {{n_d}} = \left( {1; - 2} \right)\)
d đi qua điểm \(B\left( { - 1;0} \right)\) có \(\overrightarrow {{n_d}} = \left( {1; - 2} \right) \Rightarrow d:1\left( {x + 1} \right) - 2\left( {y - 0} \right) = 0 \Rightarrow d:x - 2y + 1 = 0\)
c) Đường thẳng a song song với đường thẳng \(\Delta \) \( \Rightarrow a:2x + y + c = 0\) với \(c \ne - 5\)
O cách a một khoảng là \(\sqrt 5 \Rightarrow \frac{{\left| {2.0 + 0 + c} \right|}}{{\sqrt {{2^2} + {1^2}} }} \Rightarrow \left| c \right| = 5 \Rightarrow c = \pm 5\)
\( \Rightarrow a:2x + y + 5 = 0\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 7.12 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.13 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.15 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.16 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.17 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.18 trang 39 SBT Toán 10 Kết nối tri thức tập 2 - KNTT