Giải bài 7.12 trang 38 SBT Toán 10 Kết nối tri thức tập 2
Cho hai đường thẳng \(d:2x + y + 1 = 0\) và \(k:2x + 5y - 3 = 0\)
a) Chứng minh rằng hai đường thẳng đó cắt nhau. Tìm giao điểm của hai đường thẳng đó.
b) Tính tan của góc giữa hai đường thẳng
Hướng dẫn giải chi tiết Bài 7.12
Phương pháp giải
+ Xét vị trí các đường thẳng qua các cặp vectơ chỉ phương và vectơ pháp tuyến của mỗi đường thẳng. Tìm giao điểm nếu có bằng cách xét phương trình hoành độ
+ Gọi \({k_1}\) và \({k_2}\) là hệ số góc của hai đường thẳng, ta có \(\tan \alpha = \left| {\frac{{{k_1} - {k_2}}}{{1 + {k_1}{k_2}}}} \right|\)
Lời giải chi tiết
a) Vectơ pháp tuyến của d và k lần lượt là: \(\overrightarrow {{n_1}} = \left( {2;1} \right),\overrightarrow {{n_2}} = \left( {2;5} \right)\)
\(\Rightarrow \) Hai đường thẳng cắt nhau
Tìm giao điểm: \(\left\{ \begin{array}{l}2x + y + 1 = 0\\2x + 5y - 3 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = - 1\\y = 1\end{array} \right. \Rightarrow M\left( { - 1;1} \right)\)
b) Gọi \({k_1}\) và \({k_2}\) là hệ số góc của hai đường thẳng
+ \(d:2x + y + 1 = 0 \Rightarrow y = - 2x - 1 \Rightarrow {k_1} = - 2\)
+ \(k:2x + 5y - 3 = 0 \Rightarrow y = - \frac{2}{5}x + \frac{3}{5} \Rightarrow {k_1} = - \frac{2}{5}\)
+ Ta có: \(\tan \alpha = \left| {\frac{{{k_1} - {k_2}}}{{1 + {k_1}{k_2}}}} \right| = \left| {\frac{{ - 2 + \frac{2}{5}}}{{1 + \frac{4}{5}}}} \right| = \frac{8}{9}\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 7.10 trang 37 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.11 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.13 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.14 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.15 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.16 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.17 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.18 trang 39 SBT Toán 10 Kết nối tri thức tập 2 - KNTT