YOMEDIA
NONE

Giải bài 7.12 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT

Giải bài 7.12 trang 38 SBT Toán 10 Kết nối tri thức tập 2

Cho hai đường thẳng \(d:2x + y + 1 = 0\) và \(k:2x + 5y - 3 = 0\)

a) Chứng minh rằng hai đường thẳng đó cắt nhau. Tìm giao điểm của hai đường thẳng đó.

b) Tính tan của góc giữa hai đường thẳng

ATNETWORK

Hướng dẫn giải chi tiết Bài 7.12

Phương pháp giải

+ Xét vị trí các đường thẳng qua các cặp vectơ chỉ phương và vectơ pháp tuyến của mỗi đường thẳng. Tìm giao điểm nếu có bằng cách xét phương trình hoành độ

+ Gọi \({k_1}\) và \({k_2}\) là hệ số góc của hai đường thẳng, ta có \(\tan \alpha  = \left| {\frac{{{k_1} - {k_2}}}{{1 + {k_1}{k_2}}}} \right|\)

Lời giải chi tiết

a) Vectơ pháp tuyến của d và k lần lượt là: \(\overrightarrow {{n_1}}  = \left( {2;1} \right),\overrightarrow {{n_2}}  = \left( {2;5} \right)\)

\(\Rightarrow \) Hai đường thẳng cắt nhau

Tìm giao điểm: \(\left\{ \begin{array}{l}2x + y + 1 = 0\\2x + 5y - 3 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x =  - 1\\y = 1\end{array} \right. \Rightarrow M\left( { - 1;1} \right)\)

b) Gọi \({k_1}\) và \({k_2}\) là hệ số góc của hai đường thẳng

+ \(d:2x + y + 1 = 0 \Rightarrow y =  - 2x - 1 \Rightarrow {k_1} =  - 2\)

+ \(k:2x + 5y - 3 = 0 \Rightarrow y =  - \frac{2}{5}x + \frac{3}{5} \Rightarrow {k_1} =  - \frac{2}{5}\)

+ Ta có: \(\tan \alpha  = \left| {\frac{{{k_1} - {k_2}}}{{1 + {k_1}{k_2}}}} \right| = \left| {\frac{{ - 2 + \frac{2}{5}}}{{1 + \frac{4}{5}}}} \right| = \frac{8}{9}\) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7.12 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON