Giải bài 7.15 trang 38 SBT Toán 10 Kết nối tri thức tập 2
Trong mặt phẳng \(Oxy\), cho tam giác ABC có \(A\left( {2; - 1} \right),B\left( {2; - 2} \right)\) và \(C\left( {0; - 1} \right)\)
a) Tính độ dài đường cao của tam giác ABC kẻ từ A
b) Tính diện tích tam giác ABC
c) Tính bán kính đường tròn nội tiếp tam giác ABC
Hướng dẫn giải chi tiết Bài 7.15
Phương pháp giải
+ Độ dài đường cao của tam giác ABC kẻ từ A là khoảng cách từ A đến đường thẳng BC
+ Diện tích ABC là \(S = \frac{1}{2}d\left( {A,BC} \right).BC\)
+ Tính bán kính đường tròn nội tiếp ABC qua công thức \(S = pr\) trong đó p là nửa chu vi tam giác ABC
Lời giải chi tiết
a) Độ dài đường cao của tam giác ABC kẻ từ A là khoảng cách từ A đến đường thẳng BC
+ Viết phương trình đường thẳng BC: có vectơ chỉ phương \(\overrightarrow {BC} = \left( { - 2;1} \right) \Rightarrow \overrightarrow n = \left( {1;2} \right)\) và BC đi qua \(C\left( {0; - 1} \right)\):
\(BC:1\left( {x - 0} \right) + 2\left( {y + 1} \right) = 0 \Rightarrow x + 2y + 2 = 0\)
+ Khoảng cách từ A đến đường thẳng BC là: \(d\left( {A,BC} \right) = \frac{{\left| {2 + 2\left( { - 1} \right) + 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{2}{{\sqrt 5 }}\)
b) \(\overrightarrow {BC} = \left( { - 2;1} \right) \Rightarrow BC = \sqrt {{{\left( { - 2} \right)}^2} + {1^2}} = \sqrt 5 \)
\(S = \frac{1}{2}d\left( {A,BC} \right).BC = \frac{1}{2}.\frac{2}{{\sqrt 5 }}.\sqrt 5 = 1\)
c) \(S = pr\) với \(p = \frac{{a + b + c}}{2}\)
+ \(a = BC = \sqrt 5 \)
+ \(b = AC = \sqrt {{2^2} + {0^2}} = 2\)
+ \(c = AB = \sqrt {{0^2} + {1^2}} = 1\)
\( \Rightarrow p = \frac{{\sqrt 5 + 1 + 2}}{2} = \frac{{\sqrt 5 + 3}}{2} \Rightarrow r = 1:\frac{{\sqrt 5 + 3}}{2} = \frac{2}{{\sqrt 5 + 3}} = \frac{{3 - \sqrt 5 }}{2}\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 7.13 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.14 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.16 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.17 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.18 trang 39 SBT Toán 10 Kết nối tri thức tập 2 - KNTT