YOMEDIA
NONE

Giải bài 6 trang 72 SGK Toán 10 Cánh diều tập 2 - CD

Giải bài 6 trang 72 SGK Toán 10 Cánh diều tập 2

Chứng minh khẳng định sau: Hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v  \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ =  }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .

ATNETWORK

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

Hai vectơ cùng phương thì tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho vectơ này bằng \(k\) lần vectơ kia.

Hướng dẫn giải

Để hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v  \ne 0\) ) cùng phương thì phải tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho \(\overrightarrow u  = k.\overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}{x_1} = k{x_2}\\{y_1} = k{y_2}\end{array} \right.\) ( ĐPCM) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 72 SGK Toán 10 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON