YOMEDIA
NONE

Giải bài 5 trang 92 SGK Toán 10 Cánh diều tập 1 - CD

Giải bài 5 trang 92 SGK Toán 10 Cánh diều tập 1

Cho tứ giác ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD. Gọi G là trung điểm của đoạn thẳng MN, E là trọng tâm tam giác BCD. Chứng minh:

a) \(\overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = 4\overrightarrow {EG} \)

b) \(\overrightarrow {EA}  = 4\overrightarrow {EG} \)

c) Điểm G thuộc đoạn thẳng AE và \(\overrightarrow {AG}  = \frac{3}{4}\overrightarrow {AE} \)

ATNETWORK

Hướng dẫn giải chi tiết Bài 5

Phương pháp giải

+) M là trung điểm của AB thì \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 \) và \(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} \) với mọi G.

+) E là trọng tâm tam giác BCD thì \(\overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = \overrightarrow 0 \)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED} \)\( = 4\overrightarrow {EG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} \)

Mà: \(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} ;\overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GN} \) (do M, N là trung điểm của AB, CD)

\( \Rightarrow \overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = 4\overrightarrow {EG}  + 2(\overrightarrow {GM}  + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)

b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = \overrightarrow 0 \)

Từ ý a ta suy ra \(\overrightarrow {EA}  = 4\overrightarrow {EG} \)

c) Ta có: \(\overrightarrow {EA}  = 4\overrightarrow {EG}  \Leftrightarrow \overrightarrow {EA}  = 4.(\overrightarrow {EA}  + \overrightarrow {AG} ) \Leftrightarrow  - 3\overrightarrow {EA}  = 4\overrightarrow {AG} \)

\( \Leftrightarrow 3\overrightarrow {AE}  = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG}  = \frac{3}{4}\overrightarrow {AE} \) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 5 trang 92 SGK Toán 10 Cánh diều tập 1 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON