Giải bài 39 trang 60 SBT Toán 10 Cánh diều tập 1
Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình \(f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\) thỏa mãn bất phương trình \(g\left( x \right) \ge 0\) mà không cần kiểm tra thỏa mãn bất phương trình \(f\left( x \right) \ge 0\) để kết luận nghiệm của phương trình \(\sqrt {f\left( x \right)} = g\left( x \right)\)
Hướng dẫn giải chi tiết Bài 39
Phương pháp giải
\(\sqrt {f\left( x \right)} = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\)
Lời giải chi tiết
\(\sqrt {f\left( x \right)} \ge 0 \Rightarrow g\left( x \right) \ge 0\) Khi đó \(f\left( x \right) = {\left[ {g\left( x \right)} \right]^2} \ge 0\), thỏa mãn ĐKXĐ của căn thức.
Ta có \(\sqrt {f\left( x \right)} = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\)
Nên chỉ cần kiểm tra nghiệm của phương trình \(f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\) thỏa mãn bất phương trình \(g\left( x \right) \ge 0\) mà không cần kiểm tra thỏa mãn bất phương trình \(f\left( x \right) \ge 0\) để kết luận nghiệm của phương trình \(\sqrt {f\left( x \right)} = g\left( x \right)\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 37 trang 60 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 38 trang 60 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 40 trang 60 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 41 trang 60 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 42 trang 60 SBT Toán 10 Cánh diều tập 1 - CD