Hướng dẫn Giải bài tập Toán 10 Chân trời sáng tạo Chương 5 Bài 2 Tổng và hiệu của hai vectơ giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Hoạt động khởi động trang 88 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Một kiện hàng được vận chuyển từ điểm A đến điểm B rồi lại được vận chuyển từ điểm B đến điểm C. Tìm vectơ biểu diễn tổng của hai độ dịch chuyển: \(\overrightarrow {AB} + \overrightarrow {BC} \)
-
Hoạt động khám phá 1 trang 88 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Một robot thực hiện liên tiếp hai chuyển động có độ dịch chuyển lần lượt được biểu diễn bởi 2 vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \) (Hình 1). Tìm vectơ biểu diễn sự dịch chuyển của rô bốt sau hai sự dịch chuyển trên.
-
Hoạt động khám phá 2 trang 89 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình bình hành ABCD (Hình 4). Chứng minh rằng: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
-
Thực hành 1 trang 89 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình thang ABCD có đáy là AB và CD. Cho biết \(\overrightarrow a = \overrightarrow {AC} + \overrightarrow {CB} ;\overrightarrow b = \overrightarrow {DB} + \overrightarrow {BC} \). Chứng minh rằng hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.
-
Thực hành 2 trang 89 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho tam giác đều ABC cạnh có độ dài là a. Tính độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AC}\)
-
Vận dụng 1 trang 90 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Một máy bay có vận tốc chỉ theo hướng bắc, vận tốc gió là một vectơ theo hướng đông như hình 7. Tính độ dài vectơ tổng của hai vectơ nói trên.
-
Vận dụng 2 trang 90 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Hai người cùng kéo một con thuyền với hai lực \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\overrightarrow {{F_2}} = \overrightarrow {OB} \) có độ lớn lần lượt là 400 N, 600 N (hình 8). Cho biết góc giữa hai vectơ là \({60^\circ }\). Tìm độ lớn của vectơ hợp lực \(\overrightarrow F \) là tổng của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \)
-
Hoạt động khám phá 2 trang 90 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho 3 vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) được biểu diễn như hình 9. Hãy hoàn thành các phép cộng vectơ sau và so sánh kết quả tìm được:
a) \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {BC} = ?\)
\(\overrightarrow b + \overrightarrow a = \overrightarrow {AE} + \overrightarrow {EC} = ?\)
b) \(\left( {\overrightarrow a + \overrightarrow b } \right) + \overrightarrow c = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {CD} = ?\)
\(\overrightarrow a + \left( {\overrightarrow b + \overrightarrow c } \right) = \overrightarrow {AB} + \left( {\overrightarrow {BC} + \overrightarrow {CD} } \right) = \overrightarrow {AB} + \overrightarrow {BD} = ?\)
-
Thực hành 3 trang 91 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình vuông ABCD có cạnh bằng 1. Tính độ dài các vectơ sau:
a) \(\overrightarrow a = \left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) + \overrightarrow {CB} ;\)
b) \(\overrightarrow a = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {BC} + \overrightarrow {DA} .\)
-
Hoạt động khám phá 3 trang 91 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Tìm hợp lực của hai lực đối nhau \(\overrightarrow F \) và \( - \overrightarrow F \) (hình 11)
-
Thực hành 4 trang 92 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình vuông ABCD có cạnh bằng 1 và một điểm O tùy ý. Tính độ dài của các vectơ sau:
a) \(\overrightarrow a = \overrightarrow {OB} - \overrightarrow {OD} ;\)
b) \(\overrightarrow b = \left( {\overrightarrow {OC} - \overrightarrow {OA} } \right) + \left( {\overrightarrow {DB} - \overrightarrow {DC} } \right)\).
-
Hoạt động khám phá 4 trang 92 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
a) Cho điểm M là trung điểm của đoạn thẳng AB. Ta đã biết \(\overrightarrow {MB} = - \overrightarrow {MA} = \overrightarrow {AM} .\) Hoàn thành phép cộng vectơ sau: \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MA} + \overrightarrow {AM} = \overrightarrow {MM} = ?\)
b) Cho điểm G là trọng tâm của tam giác ABC có trung tuyến AI. Lấy D là điểm đối xứng với G qua I. Ta có BGCD là hình bình hành và G là trung điểm của đoạn thẳng AD. Với lưu ý rằng \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GD} \) và \(\overrightarrow {GA} = \overrightarrow {DG} \), hoàn thành các phép cộng vectơ sau:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} + \overrightarrow {GD} = \overrightarrow {{\rm{DD}}} = ?\)
-
Thực hành 5 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình bình hành ABCD có tâm O. Tìm ba điểm M, N, P thỏa mãn:
a) \(\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \)
b) \(\overrightarrow {ND} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)
c) \(\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \)
-
Giải bài 1 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình bình hành ABCD có O là giao điểm hai đường chéo và một điểm M tùy ý. Chứng minh rằng:
a) \(\overrightarrow {BA} + \overrightarrow {DC} = \overrightarrow {0;} \)
b) \(\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} \)
-
Giải bài 2 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho tứ giác ABCD, thực hiện cả phép cộng và trừ vectơ sau:
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA}\);
b) \(\overrightarrow {AB} - \overrightarrow {AD} \)
c) \(\overrightarrow {CB} - \overrightarrow {CD} \).
-
Giải bài 3 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho tam giác đều ABC cạnh bằng a. Tính độ dài các vectơ:
a) \(\overrightarrow {BA} + \overrightarrow {AC} \);
b) \(\overrightarrow {AB} + \overrightarrow {AC} \);
c) \(\overrightarrow {BA} - \overrightarrow {BC} \).
-
Giải bài 4 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình bình hành ABCD có O là giao điểm hai đường chéo. Chứng minh rằng:
a) \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OD} - \overrightarrow {OC;} \)
b) \(\overrightarrow {OA} - \overrightarrow {OB} + \overrightarrow {DC} = \overrightarrow 0 \)
-
Giải bài 5 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} \) và \(\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều là 10 N và \(\widehat {AMB} = 90^\circ \) Tìm độ lớn của lực \(\overrightarrow {{F_3}} \).
-
Giải bài 6 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Khi máy bay nghiêng cánh một góc \(\alpha \), lực \(\overrightarrow F \) của không khí tác động vuông góc với cánh và bằng tổng của lực nâng \(\overrightarrow {{F_1}} \) và lực cản \(\overrightarrow {{F_2}} \) (Hình 16). Cho biết \(\alpha = 30^\circ \)và \(\left| {\overrightarrow F } \right| = a\). Tính \(\left| {\overrightarrow {{F_1}} } \right|\) và \(\left| {\overrightarrow {{F_2}} } \right|\) theo a.
-
Giải bài 7 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn \(\overrightarrow {KA} + \overrightarrow {KC} = \overrightarrow 0 ;\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 ;\overrightarrow {HA} + \overrightarrow {HD} + \overrightarrow {HC} = \overrightarrow 0 \). Tính độ dài các vectơ \(\overrightarrow {KA} ,\overrightarrow {GH} ,\overrightarrow {AG} \).
-
Giải bài 8 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Một con tàu có vectơ vận tốc chỉ theo hướng nam, vận tốc của dòng nước là một vectơ theo hướng đông như hình 17. Tính độ dài vectơ tổng của hai vectơ nói trên.
-
Giải bài 1 trang 94 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình thoi ABCD và M là trung điểm của cạnh AB, N là trung điểm cạnh CD. Chứng minh rằng:
\(\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} = \overrightarrow {MN} \)
-
Giải bài 2 trang 94 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có:
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \)
b) \(\overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {CB} - \overrightarrow {CD} \)
-
Giải bài 3 trang 94 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho tam giác đều ABC cạnh a. Tính độ dài của các vectơ \(\overrightarrow {AB} + \overrightarrow {BC} \) và \(\overrightarrow {AB} - \overrightarrow {BC} \)
-
Giải bài 4 trang 94 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình bình hành ABCD có tâm O. Chứng minh rằng:
a) \(\overrightarrow {CO} - \overrightarrow {OB} = \overrightarrow {BA} \)
b) \(\overrightarrow {AB} - \overrightarrow {BC} = \overrightarrow {DB} \)
c) \(\overrightarrow {DA} - \overrightarrow {DB} = \overrightarrow {OD} - \overrightarrow {OC} \)
d) \(\overrightarrow {DA} - \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 \)
-
Giải bài 5 trang 94 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} \) và \(\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết độ lớn của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều là 100N và \(\widehat {AMB} = 60^\circ \). Tìm độ lớn của lực \(\overrightarrow {{F_3}} \)
-
Giải bài 6 trang 94 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Khi máy bay nghiêng cánh một góc \(\alpha \), lực \(\overrightarrow F \) của không khí tác động vuông góc với cánh và bằng tổng của lực nâng \(\overrightarrow {{F_1}} \) và lực cản \(\overrightarrow {{F_2}} \) (hình 8). Cho biết \(\alpha = 45^\circ \) và \(\left| {\overrightarrow F } \right| = a\). Tính \(\left| {\overrightarrow {{F_1}} } \right|\) và \(\left| {\overrightarrow {{F_2}} } \right|\)
-
Giải bài 7 trang 94 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho hình vuông ABCD có tâm O và có cạnh bằng a. Cho 2 điểm M, N thỏa mãn:
\(\overrightarrow {MA} + \overrightarrow {MD} = \overrightarrow 0 ;\overrightarrow {NB} + \overrightarrow {ND} + \overrightarrow {NC} = \overrightarrow 0 \)
Tìm độ dài các vectơ \(\overrightarrow {MA} ,\overrightarrow {NO} \)