Bạn bè (0)
Hoạt động gần đây (2)
-
Vũ Công Hoàn đã trả lời trong câu hỏi: Tính (sqrt{x^2+12}+5=3x+sqrt{x^2+5}) Cách đây 6 năm
Giải
Dễ thấy, nếu x < 0:
VT=√x2+5+3x<√x2+12<√x2+12+5VT=x2+5+3x<x2+12<x2+12+5.
Phương trình vô nghiệm. Vậy x≥0x≥0.
Phương trình ban đầu tương đương:
(√x2+5−3)−(√x2+12−4)+3x−6=0(x2+5−3)−(x2+12−4)+3x−6=0
⇔x2−4√x2+5+3−x2−4√x2+12+4+3(x−2)=0⇔x2−4x2+5+3−x2−4x2+12+4+3(x−2)=0
⇔(x−2)[x+2√x2+5+3−x+2√x2+12+4+3]=0⇔(x−2)[x+2x2+5+3−x+2x2+12+4+3]=0
⇔⎡⎢⎣x=2x+2√x2+5+3−x+2√x2+12+4+3=0(2)⇔[x=2x+2x2+5+3−x+2x2+12+4+3=0(2)
Ta có:
(2)⇔(x+2)[1√x2+5+3−1√x2+12+4]+3=0(2)⇔(x+2)[1x2+5+3−1x2+12+4]+3=0
⇔(x+2).√x2+12−√x2+5+1(√x2+5+3)(√x2+12+4)=0⇔(x+2).x2+12−x2+5+1(x2+5+3)(x2+12+4)=0
Do x > 0 nên VT > 0 = VF. Do đó phương trình (2) vô nghiệm.
Vậy phương trình ban đầu có nghiệm duy nhất x = 2. -
Vũ Công Hoàn đã tải tư liệu Thiên nhiên và đời sống của con người trong thời khắc chuyển mùa Cách đây 6 năm