Bảng 1 ghi thời gian một vật rơi giữa hai điểm cố định.
Thời gian rơi (s) |
||||
Lần 1 |
Lần 2 |
Lần 3 |
Lần 4 |
Lần 5 |
0,2027 |
0,2024 |
0,2023 |
0,2023 |
0,2022 |
a) Tính giá trị trung bình của thời gian rơi.
b) Tìm sai số tuyệt đối trung bình.
Trả lời (1)
-
a) Giá trị trung bình của thời gian rơi là:
\(\begin{array}{l}
\bar t = \frac{{{t_1} + {t_2} + {t_3} + {t_4} + {t_5}}}{5}\\
\Rightarrow \overline t = \frac{{0,2027 + 0,2024 + 0,2023 + 0,2023 + 0,2022}}{5} \approx 0,2024(s)
\end{array}\)b)
- Sai số tuyệt đối ứng với 5 lần đo là:
+ Lần đo 1: \(\Delta {t_1} = \left| {\overline t - {t_1}} \right| = \left| {0,2024 - 0,2027} \right| = {3.10^{ - 4}}(s)\)
+ Lần đo 2: \(\Delta {t_2} = \left| {\overline t - {t_2}} \right| = \left| {0,2024 - 0,2024} \right| = 0(s)\)
+ Lần đo 3: \(\Delta {t_3} = \left| {\overline t - {t_3}} \right| = \left| {0,2024 - 0,2023} \right| = {10^{ - 4}}(s)\)
+ Lần đo 4: \(\Delta {t_4} = \left| {\overline t - {t_4}} \right| = \left| {0,2024 - 0,2023} \right| = {10^{ - 4}}(s)\)
+ Lần đo 5: \(\Delta {t_5} = \left| {\overline t - {t_5}} \right| = \left| {0,2024 - 0,2022} \right| = {2.10^{ - 4}}(s)\)
- Sai số tuyệt đối trung bình của phép đo thời gian là:
\(\overline {\Delta t} = \frac{{\Delta {t_1} + \Delta {t_2} + \Delta {t_3} + \Delta {t_4} + \Delta {t_5}}}{5} = \frac{{{{3.10}^{ - 4}} + 0 + {{2.10}^{ - 4}} + {{2.10}^{ - 4}} + {{10}^{ - 4}}}}{5} = 1,{6.10^{ - 4}}(s)\)
bởi Hoang Viet 26/04/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
Nêu tính chất từ và sự định hướng của một nam châm vĩnh cửu
03/05/2024 | 0 Trả lời