YOMEDIA
NONE

Chứng minh đa thức P(x) có ít nhất 2 nghiệm biết (x-6).P(x)=(x+1).P(x-4)

1, Cho hai đa thức :

\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\\ g\left(x\right)=x^3+ax^2+bx^2+2\)

Xác định a và biết nghiệm của đa thức f(x) và nghiệm của của đa thức g(x) bằng nhau.

2, CMR : Đa thức P(x) có ít nhất 2 nghiệm. Biết :

\(\left(x-6\right)\cdot P\left(x\right)=\left(x+1\right)\cdot P\left(x-4\right)\)

3, Cho đơn thức bậc hai \(\left[P\left(x\right)=ax^2+bx+c\right]Biết:P\left(1\right)=P\left(-1\right)\\ CMR:P\left(x\right)=P\left(-3\right)\)

4, CMR: Nếu a + b +c = 0 thì đa thức

\(A\left(x\right)=ax^2+bx+c\) có một trong các ngiệm là 1.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 1 : k bt làm

    Bài 2 :

    Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

    +) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

    \(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

    \(\Leftrightarrow0=7.P\left(2\right)\)

    \(\Leftrightarrow P\left(2\right)=0\)

    \(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

    +) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

    \(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

    \(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

    \(\Leftrightarrow P\left(-1\right)=0\)

    \(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

    Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

      bởi Nguyễn My 28/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON