Chứng minh AM=AN biết tam giác ABC cân tại A, AH là tia phân giác của BAC
Cho cân tại A. Kẻ AH là tia phân giác của BAC
a) CM: AH là đường cao của , HB=HC
b)TỪ H kẻ . CM: HD=HE
c) Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy điểm N sao cho BM=CN. CM: AM=AN
d) CM: DE//BC
Trả lời (1)
-
c) Ta có : \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\\\widehat{ABM}+\widehat{ABC}=180 ^o;\widehat{ACN}+\widehat{ACB}=180^o\end{matrix}\right.\)
=> \(\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM;\Delta ACN\) có :
\(AB=AC\left(gt\right)\)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
\(MB=CN\left(gt\right)\)
=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
=> \(AM=AN\) (2 cạnh tương ứng)
d) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BD=EC\left(cm:\Delta BHD=\Delta CHE\right)\end{matrix}\right.\)
=> \(AD=AE\)
=> \(\Delta AED\) cân tại A
Mà có : \(\Delta AED;\Delta ABC\) cân tại A
=> \(\widehat{ADE}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị
=>\(\text{ DE // BC (đpcm)}\)
bởi Bảo Trân Ngô 30/03/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời