YOMEDIA
NONE

Xét tính liên tục của hàm số sau trên tập xác định của chúng : \(g\left( x \right) = \left\{ \matrix{ {{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr 3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(g\left( x \right) = \left\{ \matrix{
    {{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr 
    3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\)    có tập xác định là D = R

    - Nếu \(x \ne 2\) thì \(g\left( x \right) = {{1 - x} \over {{{\left( {x - 2} \right)}^2}}}\) là hàm phân thức hữu tỉ, nên nó liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\)

    Tại x = 2 : \(\mathop {\lim }\limits_{x \to 2} g\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{1 - x} \over {{{\left( {x - 2} \right)}^2}}} =  - \infty \)

    Vậy hàm số \(y = g\left( x \right)\) không liên tục tại x = 2

    Kết luận : \(y = g\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\) nhưng gián đoạn tại x = 2.

      bởi minh dương 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON