YOMEDIA
NONE

Xét dãy số sau bị chặn dưới, bị chặn trên hay bị chặn: \(u_n= \sin n + \cos n\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có:

    \(\begin{array}{l}
    \sin n + \cos n \\= \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} \right) \\= \sqrt 2 \left( {\sin n\cos \frac{\pi }{4} + \cos n\sin \frac{\pi }{4}} \right)\\= \sqrt 2 \sin \left( {n + \dfrac{\pi }{4}} \right)\\
    \text {Vì } - 1 \le \sin \left( {n + \frac{\pi }{4}} \right) \le 1\\ \Rightarrow  - \sqrt 2  \le \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right) \le \sqrt 2 \\ \Rightarrow - \sqrt 2 \le \sin n + \cos n \le \sqrt 2 \,\,\forall n \in {N^*}
    \end{array}\)

    Vậy \(-\sqrt 2  \le u_n \le \sqrt 2 \,\, \forall n \in {\mathbb N}^*\), tức là dãy số là dãy bị chặn.
      bởi Phạm Khánh Linh 24/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON