YOMEDIA
NONE

Tìm giá trị của tham số \(m\) để hàm số sau \(f\left( x \right) = \left\{ \matrix{ {{\sqrt x - 1} \over {{x^2} - 1}},\,\,{\rm{ nếu }}\,\,x \ne 1 \hfill \cr {m^2}{\rm{ ,\,\, nếu }}\,\,x = 1 \hfill \cr} \right.\) liên tục trên \(\left( {0; + \infty } \right)\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Trên \(\left( {0; + \infty } \right)\backslash \left\{ 1 \right\}\) thì \(f\left( x \right) = \dfrac{{\sqrt x  - 1}}{{{x^2} - 1}}\) là hàm phân thức nên liên tục.

    Tại \(x = 1\) ta có:

    \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt x  - 1}}{{{x^2} - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {\sqrt x  + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {\sqrt x  + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{1}{{\left( {x + 1} \right)\left( {\sqrt x  + 1} \right)}}\\ = \dfrac{1}{{\left( {1 + 1} \right)\left( {\sqrt 1  + 1} \right)}} = \dfrac{1}{4}\end{array}\)

    Để hàm số liên tục trên \(\left( {0; + \infty } \right)\) thì nó liên tục tại \(x = 1\)

    \( \Leftrightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)

    \( \Leftrightarrow \dfrac{1}{4} = {m^2} \Leftrightarrow m =  \pm \dfrac{1}{2}\)

    Vậy \(m =  \pm \dfrac{1}{2}\).

      bởi Co Nan 26/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON