YOMEDIA
NONE

Giải phương trình sau: \(8{\cos}^4 x-4\cos 2x+\sin 4x-4=0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(8{\cos}^4 x-4\cos 2x+\sin 4x-4=0\)

    \(\Leftrightarrow 8{\left({\dfrac{1+\cos 2x}{2}}\right)}^2\)

    \(-4\cos 2x+\sin 4x-4=0\)

    \(\Leftrightarrow 2(1+2\cos 2x+{\cos}^2 2x)\)

    \(-4\cos 2x+\sin 4x-4=0\)

    \(\Leftrightarrow 2{\cos}^2 2x+\sin 4x-2=0\)

    \(\Leftrightarrow 1+\cos 4x+\sin 4x-2=0\)

    \(\Leftrightarrow \cos 4x+\sin 4x=1\)

    \(\Leftrightarrow \dfrac{1}{\sqrt{2}}\cos 4x+\dfrac{1}{\sqrt{2}}\sin 4x=\sin\dfrac{\pi}{4}\)

    \(\Leftrightarrow \sin\dfrac{\pi}{4}\cos 4x+\cos\dfrac{\pi}{4}\sin 4x=\sin\dfrac{\pi}{4}\)

    \(\Leftrightarrow \sin{\left({4x+\dfrac{\pi}{4}}\right)}=\sin\dfrac{\pi}{4}\)

    \(\Leftrightarrow \left[ \begin{array}{l} 4x+\dfrac{\pi}{4} = \dfrac{\pi}{4}+k2\pi ,k \in \mathbb{Z}\\4x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)

    \(\Leftrightarrow \left[ \begin{array}{l} x=k\dfrac{\pi}{2},k \in \mathbb{Z}\\x=\dfrac{\pi}{8}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\end{array} \right. \)

    Vậy phương trình có nghiệm là \(x=k\dfrac{\pi}{2},k \in \mathbb{Z}\) và \(x=\dfrac{\pi}{8}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\).

      bởi bich thu 26/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON