YOMEDIA
NONE

Chứng minh y'(x)=1/(3^3.căn x^2)

Cho hàm số

y = \(^3\sqrt{x}\)

Chứng minh rằng y'(x)=\(\dfrac{1}{3^3\sqrt{x^2}}\left(x\ne0\right).\)

@Hoang Hung Quan

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài giải

    Với mỗi a \(\ne0\), ta tính đạo hàm số y = \(\sqrt[3]{x}\)tại điểm đó theo định nghĩa.

    - Tính \(\Delta y:\)

    \(\Delta y=\sqrt[3]{x+\Delta x}-\sqrt[3]{x}\)

    =

    \(\dfrac{\left(\sqrt[3]{x+\Delta}-\sqrt[3]{x}\right)\left(\sqrt[3]{\left(x+\Delta x\right)^2}+\sqrt[3]{x\left(x+\Delta x\right)}+\sqrt[3]{x^2}\right)}{\sqrt[3]{\left(x+\Delta x\right)^2}+\sqrt[3]{x\left(x+\Delta x\right)}+\sqrt[3]{x^2}}\)

    =\(\dfrac{\Delta x}{\sqrt[3]{\left(x+\Delta x^2\right)}+\sqrt[3]{x\left(x+\Delta x\right)}+\sqrt[3]{x^2}}.\)

    - Tìm giới hạn :

    \(\lim\limits_{\Delta x\rightarrow0}\dfrac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\dfrac{1}{\sqrt[3]{\left(x+\Delta x\right)^2}+\sqrt[3]{x\left(x+\Delta x\right)}+\sqrt[3]{x^2}}=\dfrac{1}{3\sqrt[3]{x^2}}=y'\left(x\right).\)

      bởi Nguyễn Hậu 29/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON