ON
YOMEDIA
VIDEO_3D

Chứng minh rằng với \(n\in {\mathbb N}^*\) ta luôn có: \({4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Đặt \({S_n} = {4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\)

    Với \(n{\rm{ }} = {\rm{ }}1,{S_1} = {\rm{ }}{4^1} + {\rm{ }}15.1{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}18\) nên \(S_1  \vdots\) \(9\)

    Giả sử với \(n = k ≥ 1\) thì \({S_k} = {\rm{ }}{4^k} + {\rm{ }}15k{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\).

    Ta phải chứng minh \(S_{k+1} \vdots\) \(9\).

    Thật vậy, ta có:

    \({S_{k + 1}} = {\rm{ }}{4^{k{\rm{ }} + {\rm{ }}1}} + {\rm{ }}15\left( {k{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}1\) 

    \( = {4.4^k} + 15k + 15 - 1\)

    \( = {4.4^k} + 15k + 14\)

    \( = {4.4^k} + 60k - {45k} + 18 - 4\)

    \( = \left( {{{4.4}^k} + 60k - 4} \right) - 45k + 18\)

    \( = {\rm{ }}4({4^k} + {\rm{ }}15k{\rm{ }}-{\rm{ }}1){\rm{ }}-{\rm{ }}45k{\rm{ }} + {\rm{ }}18{\rm{ }} \)

    \(= {\rm{ }}4{S_k}-{\rm{ }}9\left( {5k{\rm{ }}-{\rm{ }}2} \right)\)

    Theo giả thiết quy nạp thì \(S_k  \vdots\) \(9\)  nên \(4S_k   \vdots 9\)

    Mặt khác \(9(5k - 2)   \vdots\) \(9\), nên \(S_{k+1}  \vdots 9\)

    Vậy \((4^n+ 15n - 1)  \vdots\) \(9\) với mọi \(n\in {\mathbb N}^*\)

      bởi Trần Hoàng Mai 24/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
AMBIENT

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

MGID

Các câu hỏi mới

 

AMBIENT
1=>1
Array
(
    [0] => Array
        (
            [banner_bg] => 
            [banner_picture] => 894_1634779022.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://kids.hoc247.vn/tieuhoc247
            [banner_startdate] => 2021-09-01 00:00:00
            [banner_enddate] => 2021-10-31 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)