YOMEDIA
NONE

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Chứng minh rằng nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty \) thì luôn tồn tại ít nhất một số c thuộc \(\left( {a; + \infty } \right)\) sao cho \(f\left( c \right) < 0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - \infty \) nên với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to  + \infty \) ta luôn có \(\mathop {\lim }\limits_{n \to  + \infty } f\left( x \right) =  - \infty \)

    Do đó \(\mathop {\lim }\limits_{n \to  + \infty } \left[ { - f\left( {{x_n}} \right)} \right] =  + \infty \)

    Theo định nghĩa suy ra \( - f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

    Nếu số dương này là 2 thì \( - f\left( {{x_n}} \right) > 2\) kể từ một số hạng nàođó trởđi.

    Nói cách khác, luôn tồn tại ít nhất một số \({x_k} \in \left( {a; + \infty } \right)\) sao cho \( - f\left( {{x_k}} \right) > 2\) hay \(f\left( {{x_k}} \right) <  - 2 < 0\)

    Đặt \(c = {x_k}\) ta có \(f\left( c \right) < 0\)

      bởi Ngoc Son 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON