YOMEDIA
NONE

Cho hai mặt phẳng \((α)\) và \((β)\). Chứng minh rằng khoảng cách giữa hai mặt phẳng song song \((α)\) và \((β)\) là nhỏ nhất trong các khoảng cách từ một điểm bất kì của mặt phẳng này tới một điểm bất kì của mặt phẳng kia.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Hai mặt phẳng song song (α) và (β) nên có 1 đường thằng a ∈ (α) và a // (β)

    ⇒ Khoảng cách giữa đường thẳng a và mặt phẳng (β) là bé nhất so với khoảng cách từ một điểm bất kì thuộc a tới một điểm bất kì thuộc mặt phẳng (β).

    Vậy khoảng cách giữa hai mặt phẳng song song (α) và (β) là nhỏ nhất trong các khoảng cách từ một điểm bất kì của mặt phẳng này tới một điểm bất kì của mặt phẳng kia.

      bởi Lê Nhật Minh 26/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON