Xét phép thử tung con súc sắc 6 mặt hai lần. Cho các biến cố sau:
A: “Số chấm xuất hiện ở cả hai lần tung giống nhau”
B: “ Tổng số chấm xuất hiện ở hai lần tung chia hết cho 3”
Tính |ΩA| + |ΩB|?
Trả lời (1)
-
* Ta có: Các kết quả thuận lợi để số chấm xuất hiện ở cả hai lần tung giống nhau là:
A = { (1, 1); (2, 2); (3,3); (4, 4); (5,5); (6, 6)}.
⇒ |ΩA| = 6
* Các kết quả thuận lợi để tổng số chấm xuất hiện ở hai lần tung chia hết cho 3 là:
B = { (1; 2); (2;1); (1; 5); (5; 1); (4; 2); (2; 4); (3; 3); (3; 6); (6;3); (4;5); (5; 4); (6; 6)}
⇒ |ΩB| = 12
⇒ |ΩA| + |ΩB| = 6 + 12 = 18
bởi hồng trang 14/09/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời