Xác định trục đối xứng, tọa độ đỉnh, giao điểm với trục tung và trục hoành của parabol: \(y = - 2{x^2} - x + 2\)
Trả lời (1)
-
Ta có \(a = - 2;b = - 1;c = 2\).Ta có \(\Delta = {( - 1)^2} - 4.2.( - 2) = 17\).
Trục đối xứng là đường thẳng \(x = - \dfrac{1}{4}\); đỉnh \(I( - \dfrac{1}{4}; - \dfrac{{17}}{8})\); giao với trục tung tại điểm \((0;-2)\).
Để tìm giao điểm với trục hoành ta giải phương trình
\( - 2{x^2} - x + 2 = 0 \Leftrightarrow \)
\({x_{1,2}} = \dfrac{{ - 1 \pm \sqrt {17} }}{4}\).
Vậy các giao điểm với trục hoành là
\(\left( {\dfrac{{ - 1 + \sqrt {17} }}{4};0} \right)\) và \(\left( {\dfrac{{ - 1 - \sqrt {17} }}{4};0} \right)\).
bởi Nguyễn Lệ Diễm 20/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời