YOMEDIA
NONE

Viết pt tổng quát đường trung tuyến BE biết tam giác ABC có đỉnh B(-1;3)

Cho tam giác ABC có đỉnh B(-1;3), trung tuyến AM có phương trình 3x+2y-9=0: trung tuyến CN: x-1=0

a) Viết pt tổng quát đường trung tuyến BE

b) Tìm tọa độ các đỉnh AC

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Gọi giao điểm của $AM$ và $CN$ là $I$

    Khi đó $BI$ là đường trung tuyến của tam giác $ABC$ theo tính chất ba đường trung tuyến đồng quy tại một điểm. Theo đó phương trình trung tuyến $BE$ cũng trùng với $BI$

    Giao điểm $I$ có tọa độ là nghiệm của HPT:

    \(\left\{\begin{matrix} 3x+2y-9=0\\ x-1=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 3x+2y-9=0\\ x=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3+2y-9=0\\ x=1\end{matrix}\right.\)

    \(\Leftrightarrow \left\{\begin{matrix} y=3\\ x=1\end{matrix}\right.\)

    Vậy $I(1;3)$

    Gọi pt đường thẳng $BI$ là $y=ax+b$

    Ta có: \(B(-1;3); I(1;3)\in BI\Rightarrow \left\{\begin{matrix} 3=a+b\\ 3=-a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=0\\ b=3\end{matrix}\right.\)

    Vậy PT đường trung tuyến là: \(y=3\Leftrightarrow y-3=0\)

    b)

    Vì \(A\in AM\Rightarrow A(a, \frac{9-3a}{2})\)

    Vì \(C\in CN\Rightarrow C(1; c)\)

    $I(1;3)$ là trọng tâm của tam giác $ABC$ nên:

    \(\left\{\begin{matrix} \frac{x_A+x_B+x_C}{3}=x_I\\ \frac{y_A+y_B+y_C}{3}=y_I\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} \frac{a+(-1)+1}{3}=1\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\)

    \(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{c+3}{3}=3\end{matrix}\right.\Rightarrow a=3; c=6\)

    Vậy tọa độ A là: \((3; 0)\), tọa độ C là \((1;6)\)

      bởi Trần Thanh Hòa Hòa 16/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON