Viết phương trình đường thẳng AD biết AD không song song với các trục tọa độ - hồng trang
YOMEDIA
NONE

Viết phương trình đường thẳng AD biết AD không song song với các trục tọa độ

Trong mặt phẳng tọa độ Oxy, cho hình thang ABC vuông tại A và D; diện tích hình thang bằng 6; CD = 2AB, B(0; 4). Biết điểm I(3; -1), K(2; 2) lần lượt nằm trên đường thẳng AD và DC. Viết phương trình đường thẳng AD biết AD không song song với các trục tọa độ.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vì AD không song song các trục tọa độ nên gọi véc tơ pháp tuyến của AD là \(\overrightarrow{n}=(1;b),b \neq 0;\) suy ra: Phương trình AD: \(1(x-3)+b(y+1)=0\)

    Phương trình AB: \(bx-(y-4)=0\)

    \(S_{ABCD}=\frac{AB+CD}{2}.AD=\frac{3AB}{2}.AD=\frac{3}{2}.d(B,AD).d(K,AB)\)

    \(\frac{-3}{2}.\frac{\left | -3+5b \right |}{\sqrt{b^{2}+1}}.\frac{\left | 2b+2 \right |}{\sqrt{b^{2}+1}}.\)

    \(S_{ABCD}=6\Leftrightarrow 3\frac{\left | -3+5b \right |}{\sqrt{b^{2}+1}}.\frac{\left | 2b+2 \right |}{\sqrt{b^{2}+1}}=6\Leftrightarrow \left | 5b-3 \right |.\left | b+1 \right |=2(b^{2}+1)\Leftrightarrow \Bigg \lbrack\begin{matrix} b=1\\ b=-\frac{5}{3} \\c=\frac{-1 \pm 2\sqrt{2}}{7} \end{matrix}\)

    Đáp số: \(x+y-2=0;3x-5y-14=0;7x-(1+2\sqrt{2})y-2\sqrt{2}-22=0;7x-(1-2\sqrt{2})y+2\sqrt{2}-22=0\)

      bởi Việt Long 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON