YOMEDIA
NONE

Tính diện tích tam giác tạo bởi 2 đường thẳng y=-x+5 và y=x+5 và trục Ox?

cho 2 đường thẳng \(\Delta:y=-x+5,\Delta':y=x+5\)

diện tích tam giác tạo bởi 2 đường thẳng vaf trục Ox có số đo là bao nhiêu

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có : \(-x+5=x+5\Leftrightarrow2x=0\Leftrightarrow x=0\)

    (+) \(x=0\Rightarrow y=-x+5=-0+5=5\)

    \(\Rightarrow\) 2 đường thẳng \(\Delta\)\(\Delta'\) cắt nhau tại điểm có tọa độ là \(A\left(0;5\right)\)

    ta có : đường thẳng \(\Delta\) cắt trục hoành \(\Leftrightarrow\) \(0=-x+5\Leftrightarrow x=5\)

    \(\Rightarrow\) đường thẳng \(\Delta\) cắt trục hoành tại điểm có tọa độ \(B\left(5;0\right)\)

    ta có : đường thẳng \(\Delta'\) cắt trục hoành \(\Leftrightarrow\) \(0=x+5\Leftrightarrow x=-5\)

    \(\Rightarrow\) đường thẳng \(\Delta'\) cắt trục hoành tại điểm có tọa độ \(C\left(-5;0\right)\)

    độ dài \(AB=\sqrt{\left(5-0\right)^2+\left(0-5\right)^2}=\sqrt{25+25}=5\sqrt{2}\)

    độ dài \(BC=\sqrt{\left(-5-5\right)^2+\left(0-0\right)^2}=\sqrt{100}=10\)

    độ dài \(CA=\sqrt{\left(0+5\right)^2+\left(5-0\right)^2}=\sqrt{25+25}=5\sqrt{2}\)

    \(\Rightarrow p=\dfrac{5\sqrt{2}+10+5\sqrt{2}}{2}=5+5\sqrt{2}\) (\(p\) là nữa chu vi)

    áp dụng Hê-rông ta có : \(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-BC\right)\left(p-CA\right)}\)

    \(=\sqrt{\left(5+5\sqrt{2}\right)\left(5+5\sqrt{2}-5\sqrt{2}\right)\left(5+5\sqrt{2}-10\right)\left(5+5\sqrt{2}-5\sqrt{2}\right)}\)

    \(=25\)

    vậy diện tích tam giác tạo bởi 2 đường thẳng và trục \(Ox\) có số đo bằng \(25\)

      bởi Khương Lê 06/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON