ON
ADMICRO
VIDEO_3D

Tìm quỹ tích những điểm có tổng bình phương các khoảng cách đến bốn đỉnh của một tứ giác bằng \(k^2\) không đổi.

Theo dõi Vi phạm
VDO.AI

Trả lời (1)

 
 
 
  •  

    Xét tứ giác \(ABCD\). Gọi \(I, J\) lần lượ là trung điểm của \(AB, CD\) và \(G\) là trung điểm cùa \(IJ\) (h.56). Với mỗi điểm \(M,\) ta đều có:

    \(\begin{array}{l}M{A^2} + M{B^2} + M{C^2} + M{D^2}\\ = 2M{I^2} + \dfrac{{A{B^2}}}{2} + 2M{J^2} + \dfrac{{C{D^2}}}{2}\\= 2\left( {2M{G^2} + \dfrac{{I{J^2}}}{2}} \right) + \dfrac{{A{B^2} + C{D^2}}}{2}\\= 4M{G^2} + \dfrac{{A{B^2} + C{D^2}}}{2} + I{J^2}.\end{array}\)

    Từ đó suy ra

    \(M{A^2} + M{B^2} + M{C^2} + M{D^2}\)

    \(= {k^2} \Leftrightarrow   4M{G^2}\)

    \(= {k^2} - \left( {\dfrac{{A{B^2} + C{D^2}}}{2} + I{J^2}} \right)\) không đổi.

    Từ đó ta có:

    Nếu \({k^2} - \left( {\dfrac{{A{B^2} + C{D^2}}}{2} + I{J^2}} \right) > 0\) thì quỹ tích điểm M là đường tròn tâm G, bán kính \(r = \sqrt {\dfrac{{{k^2} - \left( {\dfrac{{A{B^2} + C{D^2}}}{2} + I{J^2}} \right)}}{4}} \).

    Nếu \({k^2} = \left( {\dfrac{{A{B^2} + C{D^2}}}{2} + I{J^2}} \right)\) thì quỹ tích điểm M là một điểm G.

    Nếu \({k^2} - \left( {\dfrac{{A{B^2} + C{D^2}}}{2} + I{J^2}} \right) < 0\) thì qỹ tích điểm M là tập rỗng.

      bởi Nguyen Dat 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

MGID

Các câu hỏi mới

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_bg] => 
            [banner_picture] => 809_1633914298.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://kids.hoc247.vn/ma-tk-vip/?utm_source=hoc247net&utm_medium=PopUp&utm_campaign=Hoc247Net
            [banner_startdate] => 2021-09-01 00:00:00
            [banner_enddate] => 2021-10-31 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)