YOMEDIA
NONE

Tìm min của E=a+b+c+1/a+1/b+1/c

Cho a,b,c > 0 và a+ b + c \(\le\dfrac{3}{2}\). Tìm Min của \(E=a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

@Phùng Khánh Linh @Akai Haruma ...... giúp với

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • E = a + \(\dfrac{1}{4a}+b+\dfrac{1}{4b}+c+\dfrac{1}{4c}+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

    áp dụng bdt cosi cho cac so duong co:

    \(a+\dfrac{1}{4a}\ge2\sqrt{a.\dfrac{1}{4a}}\Leftrightarrow a+\dfrac{1}{4a}\ge1\)

    \(b+\dfrac{1}{4b}\ge1,c+\dfrac{1}{4c}\ge1\)

    dấu = xảy ra khi a=b=c = 1/2

    CM: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{\dfrac{3}{2}}\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6\)\(\Rightarrow\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9}{2}\)\(\Rightarrow E\ge3+\dfrac{9}{2}\Rightarrow E\ge\dfrac{15}{2}\)

    Vậy min E= 15/2 khi a=b=c=1/2

      bởi Nguyễn Phương Mai 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON