Tìm m để hệ (m-1)x^2+3x+1=0 và mx^2-2x+5 < 0 có nghiệm
Tìm m để hệ sau có nghiệm duy nhất
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\)
Trả lời (2)
-
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) (1)
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}mx^2=x^2-3x-1\\x^2-3x-1-2x+5<0\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}f\left(x\right):=\left(m-1\right)x^2+3x+1=0\\x^2-5x+4<0\end{cases}\)
Mà \(x^2-5x+4<0\) (3) có tập nghiệm T=(1;4)
nên hệ (1) có nghiệm duy nhất khi và chỉ khi phương trình \(f\left(x\right):=\left(m-1\right)x^2+3x+1=0\) (2) có đúng một nghiệm \(x\in T\)
- Nếu m=1 thì (2) có nghiệm duy nhất \(x=-\frac{1}{3}\) không thuộc T
- Nếu \(m\ne1\) thì (2) là phương trình bậc 2 với \(\Delta=13-4m\)
+ Nếu \(\Delta=0\) hay \(m=\frac{13}{4}\) thì (2) có nghiệm \(x=-\frac{2}{3}\) không thuộc T
+ Nếu \(\Delta>0\) hay \(m<\frac{13}{4}\) thì (2) có nghiệm duy nhất thuộc T khi và chỉ khi xảy ra một trong hai trường hợp sau :
\(x_1\) \(\le\)1 < \(x_2\) < 4 (a)
hoặc
1< \(x_1\) <4 \(\le\) \(x_2\) (b)
# Nếu \(x_1\) = 1 \(\Leftrightarrow\) m-1+3+1=0 \(\Leftrightarrow\) m=-3 thì \(x_2=-\frac{1}{4}\) không thỏa mãn(a)
# Nễu \(x_2=4\) hay \(m=\frac{3}{16}\) thì \(x_1=-\frac{4}{13}\) không thỏa mãn (b)
Vậy ta phải có
\(x_1\) <1 < \(x_2\) < 4
hoặc
1< \(x_1\) <4 < \(x_2\)
\(\Leftrightarrow\) \(f\left(1\right)f\left(4\right)<0\)
\(\Leftrightarrow\) (m+3)(16m-3) <0
\(\Leftrightarrow\) -3<m<\(\frac{3}{16}\) Thỏa mãn điều kiện \(\Delta>0\)
Tóm lại -3<m<\(\frac{3}{16}\) là các giá trị cần tìm
bởi Huỳnh Phát
07/11/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



