Tìm GTLN của hàm f(x)=2x.(5-3x)
Tìm GTNN của hàm f(x)=2x.(5-3x)
Trả lời (1)
-
\(f\left(x\right)=2x\left(5-3x\right)=\frac{2}{3}.3x.\left(5-3x\right)\)
Tới đây, ta có thể áp dụng kết luận sau : Cho hai số a,b không âm. Nếu a+b có tổng không đổi thì tích a.b đạt giá trị lớn nhất khi a = b .
Áp dụng với a= 3x , b = 5-3xRõ ràng ta thấy a+b = 5 không đổi, vậy tích a.b = 3x(5-3x) đạt giá trị lớn nhất khi a = b , tức là 3x = 5-3x <=> x = 5/6
Vậy : min f(x) = min f(5/6) = 25/6
Cách khác : \(f\left(x\right)=2x\left(5-3x\right)=-6x^2+10x=-6\left(x-\frac{5}{6}\right)^2+\frac{25}{6}\le\frac{25}{6}\)
Vậy min f(x) = 25/6 khi x = 5/6
Bài này không thể tìm giá trị nhỏ nhất được nhé!
bởi Le Trong Luong 28/09/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời