Tìm giá trị nhỏ nhất của biểu thức: \(S=\frac{a^3+b^3}{a+2b}+\frac{b^3+c^3}{b+2c}+\frac{c^3+a^3}{c+2a}\)
Help me!
Cho ba số thực dương a,b,c và thỏa mãn điều kiện a2+b2+c2 =3. Tìm giá trị nhỏ nhất của biểu thức:
\(S=\frac{a^3+b^3}{a+2b}+\frac{b^3+c^3}{b+2c}+\frac{c^3+a^3}{c+2a}\)
Trả lời (1)
-
Trước tiên ta chứng minh BĐT:
\(\frac{x^3+1}{x+1}\geq \frac{7}{18}x^2+\frac{5}{18}(x>0) (*)\)
\((*)\Leftrightarrow 18(x^3+1)\geq (x+2)(7x^2+5)\) luôn đúng với mọi x>0, d ấu “=” sảy ra khi x=1
\(\Leftrightarrow (x-1)^2(11x+8)\geq 0\)
Áp dụng (*) cho x lần lượt là \(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)
\(\frac{a^3+b^3}{a+2b}\geq \frac{7a^2}{18}+\frac{5b^2}{18}\)
\(\frac{b^3+c^3}{b+2c}\geq \frac{7b^2}{18}+\frac{5c^2}{18}\)
\(\frac{c^3+a^3}{c+2a}\geq \frac{7c^2}{18}+\frac{5a^2}{18}\)
Từ các đảng thức trên suy ra \(S\geq \frac{12(a^2+b^2+c^2)}{18}=2\)
Vậy MinS =2 khi a=b=c=1bởi Hoai Hoai 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời