YOMEDIA
NONE

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(F\left( {x;y} \right) = 4x - 3y\) trên miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \ge - 4}\\{x + y \le 5}\\{x - y \le 5}\\{x - y \ge - 4}\end{array}.} \right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xác định miền nghiệm của bất phương trình \(x + y \ge  - 4\) là nửa mặt phẳng bờ \(d:x + y =  - 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

    Xác định miền nghiệm của bất phương trình \(x + y \le 5\) là nửa mặt phẳng bờ \({d_1}:x + y = 5\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

    Xác định miền nghiệm của bất phương trình \(x - y \le 5\) là nửa mặt phẳng bờ \({d_2}:x - y = 5\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

    Xác định miền nghiệm của bất phương trình \(x - y \ge  - 4\) là nửa mặt phẳng bờ \({d_3}:x - y =  - 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

    Miền nghiệm của hệ bất phương trình là: hình vuông \(ABCD\) với \(A\left( { - 4;0} \right),\)\(B\left( {\frac{1}{2};\frac{9}{2}} \right),\) \(C\left( {5;0} \right),\,\,D\left( {\frac{1}{2};\frac{{ - 9}}{2}} \right).\)

    Ta có: \(F\left( { - 4;0} \right) = 4\left( { - 4} \right) - 3.0 =  - 16,\,\,F\left( {\frac{1}{2};\frac{9}{2}} \right) = 4.\frac{1}{2} - 3.\frac{9}{2} = \frac{{ - 23}}{2},\)

    \(F\left( {5;0} \right) = 4.5 - 3.0 = 20,\,\,F\left( {\frac{1}{2};\frac{{ - 9}}{2}} \right) = 4.\frac{1}{2} - 3.\left( {\frac{{ - 9}}{2}} \right) = \frac{{31}}{2}.\)

    Vậy giá trị lớn nhất của biểu thức là: \(F\left( {5;0} \right) = 20,\) giá trị nhỏ nhất của biểu thức là: \(F\left( { - 4;0} \right) =  - 16.\)

      bởi Nguyễn Vũ Khúc 19/11/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON