YOMEDIA
NONE

Tìm các giá trị của m để hệ bất phương trình sau có nghiệm: \(\left\{ {\begin{array}{*{20}{c}}{x + 4{m^2} \le 2mx + 1}\\{3{x} + 2 > 2{x} - 1}\end{array}} \right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có:

    \(\left( I \right)\left\{ {\begin{array}{*{20}{c}}{x + 4{m^2} \le 2m{x} + 1}\\{3{x} + 2 > 2{x} - 1}\end{array}} \right.\)

    \(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left( {1 - 2m} \right)x \le 1 - 4{m^2}\,\,\,\,\,\,\,\,\left( 1 \right)}\\{x >  - 3.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\)

    Nếu \(m < \dfrac{1}{2}\) thì \(\,\left( 1 \right) \Leftrightarrow x \le 1 + 2m,\) nên hệ (I) có nghiệm khi \( - 3 < 1 + 2m,\) hay \(m > -2\). Kết hợp với điều kiện \(m < \dfrac{1}{2},\) ta có \( - 2 < m < \dfrac{1}{2}.\)

    Nếu \(m = \dfrac{1}{2}\) thì (1) có dạng \(0.x ≤ 0\) (luôn đúng với mọi x ∈ R), nên hệ (I) luôn có nghiệm \(x > -3.\)

    Nếu \(m > \dfrac{1}{2}\) thì \((1) ⇔ x ≥ 1 + 2m\), nên hệ (I) luôn có nghiệm \(x ≥ 1 + 2m.\)

    Vậy khi \(m > -2\) thì hệ (I) luôn có nghiệm.

      bởi Bánh Mì 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON