Ta cho tam giác ABC có \(AC = 7cm,\,\,BC = 10cm\) và \(\widehat {BAC} = {60^0}\). Tính \(\sin \widehat {ABC}\) và tính độ dài cạnh AB (yêu cầu tính ra kết quả chính xác, không tính xấp xỉ).
Ta cho tam giác ABC có \(AC = 7cm,\,\,BC = 10cm\) và \(\widehat {BAC} = {60^0}\). Tính \(\sin \widehat {ABC}\) và tính độ dài cạnh AB (yêu cầu tính ra kết quả chính xác, không tính xấp xỉ).
Trả lời (1)
-
Áp dụng định lí sin ta có:
\(\begin{array}{l}\dfrac{{AC}}{{\sin \widehat {ABC}}} = \dfrac{{BC}}{{\sin \widehat {BAC}}}\\ \Leftrightarrow \dfrac{7}{{\sin \widehat {ABC}}} = \dfrac{{10}}{{\sin {{60}^0}}}\\ \Leftrightarrow \sin \widehat {ABC} = \dfrac{{7.\sin {{60}^0}}}{{10}} = \dfrac{{7\sqrt 3 }}{{20}}\end{array}\)
Áp dụng định lí cosin ta có:
\(\begin{array}{l}\,\,\,\,\,\,\cos \widehat {BAC} = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}\\ \Leftrightarrow \cos {60^0} = \dfrac{{A{B^2} + {7^2} - {{10}^2}}}{{2.AB.7}}\\ \Leftrightarrow 7AB = A{B^2} - 51\\ \Leftrightarrow A{B^2} - 7AB - 51 = 0\\ \Leftrightarrow \left[ \begin{array}{l}AB = \dfrac{{7 + \sqrt {253} }}{2}\\AB = \dfrac{{7 - \sqrt {253} }}{2} < 0\,\,\left( {ktm} \right)\end{array} \right.\\ \Rightarrow AB = \dfrac{{7 + \sqrt {253} }}{2}\end{array}\)
bởi Lan Anh 15/07/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời