Giải hệ x/(y^2+1)=y^4/(x^2+y^2) và căn(4x+5)+căn(y^2+8)=6
giải hệ phương trình :
\(\begin{cases}\frac{x}{y^2+1}=\frac{y^4}{x^2+y^2}\\\sqrt{4x+5}+\sqrt{y^2+8}=6\end{cases}\)
Trả lời (1)
-
phương trình đầu tương đương với:
\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)
\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)
\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)
\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)
\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)
TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm
\(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)
\(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)
\(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)
\(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)
bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé
TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có
\(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)
Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn
bởi Tuấn Minh 27/09/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời