Có ba học sinh vào ba quầy sách để mua sách. Cho biết xác suất để có hai học sinh vào cùng một quầy, học sinh còn lại vào một trong hai quầy còn lại là:
Trả lời (1)
-
Không gian mẫu là cách xếp \(3\) bạn vào \(3\) quầy (có thể vào chung quầy) nên khi đó \(n(\Omega)=3^3=27\).
Gọi biến cố \(A\) là hai học sinh vào cùng một quầy, học sinh còn lại vào một trong hai quầy còn lại.
Chọn \(2\) học sinh vào một quầy có \(C_3^2\) cách.
Chọn quầy xếp hai học sinh đó có \(3\) cách.
Học sinh còn lại xếp vào một trong hai quầy còn lại có \(2\) cách.
Theo quy tắc nhân, \(n(A)=C_3^2.3.2=18\).
Vậy xác suất để cả ba học sinh vào cùng một quầy là \(P(A)=\dfrac{n(A)}{n(\Omega)}=\dfrac{18}{27}=\dfrac{2}{3}\).
bởi Anh Trần 14/09/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời