YOMEDIA
NONE

Chứng minh x^2/(x^2+2x+4)+y^2/(y^2+2y+4)+z^2/(z^2+2z+4)>=1

Cho 3 số thực \(x,y,z\) thỏa mãn \(xyz=8\). Chứng minh rằng

\(\frac{x^2}{x^2+2x+4}+\frac{y^2}{y^2+2y+4}+\frac{z^2}{z^2+2z+4}\ge1\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Do \(xyz=8\) nên tồn tại các số dương \(a,b,c\) sao cho \((x,y,z)=\left(\frac{2a^2}{bc},\frac{2b^2}{ac},\frac{2c^2}{ab}\right)\)

    Khi đó , BĐT cần CM tương đương với:

    \(P=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\geq 1\)

    Áp dụng BĐT Cauchy-Schwarz:

    \(P\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2}\) \((1)\)

    Áp dụng bất đẳng thức AM-GM:

    \(a^2b^2+b^2c^2\geq 2ab^2c\). Tương tự với các cặp biểu thức còn lại và cộng theo vế suy ra \(a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

    \(\Rightarrow abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq 2(a^2b^2+b^2c^2+c^2a^2)\)

    \(\Rightarrow a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq (a^2+b^2+c^2)^2\) \((2)\)

    Từ \((1),(2)\Rightarrow P\geq 1\) (đpcm)

    Dấu bằng xảy ra khi \(x=y=z=2\)

      bởi Hồng Nguyễn 06/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON