Chứng minh trong tam giác vuông thì R>=(căn 2+1)r
cmr trong tam giác vuông tại a R\(\ge\) (\(\sqrt{2}\)+1)r
Trả lời (1)
-
Lời giải:
Tam giác $ABC$ vuông tại $A$ thì $R=\frac{a}{2}$
Do đó BĐT cần chứng minh tương đương với :
\(\frac{a}{2}\geq (\sqrt{2}+1)\frac{S}{p}\Leftrightarrow a(a+b+c)\geq 2(\sqrt{2}+1)bc\) $(\star)$
Theo hệ thức Pitago thì \(b^2+c^2=a^2\)
Suy ra \((\star)\Leftrightarrow \sqrt{b^2+c^2}(\sqrt{b^2+c^2}+b+c)\geq 2(\sqrt{2}+1)bc\)
Điều này luôn đúng vì theo bất đẳng thức AM-GM thì:
\(b^2+c^2\geq 2bc\)
Và \(\sqrt{b^2+c^2}(b+c)\geq \frac{(b+c)^2}{\sqrt{2}}\geq \frac{4bc}{\sqrt{2}}=2\sqrt{2}bc\)
Do đó ta có đpcm
Dấu bằng xảy ra khi $b=c$ tức là tam giác $ABC$ vuông cân tại $A$
bởi Đặng Gia Thuận 28/09/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời