Chứng minh rằng khoảng cách d từ trọng tâm tam giác \(ABC\) đến tâm đường tròn ngoại tiếp của tam giác đó thỏa mãn hệ thức: \({R^2} - {d^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{9}.\)
Trả lời (1)
-
Giả sử tam giác \(ABC\) nội tiếp trong đường tròn tâm \(O\) và có trọng tâm \(G\). Ta có
\(\begin{array}{*{20}{l}}{{{\overrightarrow {OA} }^2} + {{\overrightarrow {OB} }^2} + {{\overrightarrow {OC} }^2}}\\{ = {{\left( {\overrightarrow {GA} - \overrightarrow {GO} } \right)}^2} + {{\left( {\overrightarrow {GB} - \overrightarrow {GO} } \right)}^2} + \\ {{\left( {\overrightarrow {GC} - \overrightarrow {GO} } \right)}^2}}\\\begin{array}{l} = {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ - 2\overrightarrow {GO} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + 3{\overrightarrow {GO} ^2}\end{array}\end{array}\)
Do \(OA=OB=OC=R\) và \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) nên \(3{R^2} = G{A^2} + G{B^2} + G{C^2} + 3{d^2}\).
Mặt khác
\(\begin{array}{*{20}{l}}{G{A^2} + G{B^2} + G{C^2}}\\{ = \dfrac{4}{9}\left( {m_a^2 + m_b^2 + m_c^2} \right)}\\{ = \dfrac{4}{9}\left( {\dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4} + \dfrac{{{a^2} + {c^2}}}{2}} \right.}\\\begin{array}{l}\left. { - \dfrac{{{b^2}}}{4} + \dfrac{{{a^2} + {b^2}}}{2} - \dfrac{{{c^2}}}{4}} \right)\\ = \dfrac{{{a^2} + {b^2} + {c^2}}}{3}\end{array}\end{array}\)
Do đó \(3{R^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{3} + 3{d^2}\), suy ra \({R^2} - {d^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{9}\).
bởi Tuấn Tú
23/02/2021
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



