Chứng minh 2(a^3+b^3+c^3)>=a^2+b^2+c^2
cho a;b;c là các số thực khôn âm có a+b+c=1.c/m rằng:
2(a^3+b^3+c^3)>hoặc = a^2+b^2+c^2
Trả lời (1)
-
Đề bài của bạn bị nhầm. Nếu đúng như dấu bằng xảy ra thì phải là CMR
\(3(a^3+b^3+c^3)\geq a^2+b^2+c^2\)
Lời giải:
Bổ đề: Với $a,b>0$ thì \(a^3+b^3\geq ab(a+b)\).
BĐT này đúng vì tương đương với \((a-b)^2(a+b)\geq0\)
Do đó, thực hiện tương tự với bộ \((b^3,c^3),(c^3,a^3)\) ta có:
\(2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ca(c+a)(1)\)
Ta có:
\((a+b+c)(a^2+b^2+c^2)=a^3+b^3+c^3+ab(a+b)+bc(b+c)+ca(c+a)(2)\)
Từ \((1),(2)\Rightarrow (a+b+c)(a^2+b^2+c^2)\leq a^3+b^3+c^3+2(a^3+b^3+c^3)=3(a^3+b^3+c^3)\)
Vì $a+b+c=1$ nên điều trên tương đương với \(3(a^3+b^3+c^3)\geq a^2+b^2+c^2\) (đpcm)
Dấu $=$ xảy ra khi $a=b=c=\frac{1}{3}$
bởi Nguyễn Minh Thành 28/09/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời