YOMEDIA
NONE

Cho tam giác ABC vuông ở A nội tiếp trong đường tròn bán kính R và có BC = a, CA = b, AB = c. Chứng minh hệ thức: \({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = 2R\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Do tam giác ABC vuông tại A nên trung điểm O của BC là tâm đường tròn ngoại tiếp tam giác ABC ⇒ BC = a = 2R

    Ta có:

    \(\eqalign{
    & \sin A = \sin {90^0} = 1 = {a \over a} = {a \over {2R}} \cr
    & \Rightarrow {a \over {\sin A}} = 2R \cr
    & \sin B = {b \over a} = {b \over {2R}} \Rightarrow {b \over {\sin B}} = 2R \cr
    & \sin C = {c \over a} = {c \over {2R}} \Rightarrow {c \over {\sin C}} = 2R \cr} \)

      bởi Sam sung 20/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON