Cho tam giác \(ABC\) và một điểm \(O\) bất kì. Chứng minh rằng với mọi điểm \(M\) ta luôn luôn tìm được ba số \(\alpha \,,\beta \,,\gamma \) sao cho \(\alpha + \beta + \gamma = 1\) và \(\overrightarrow {OM} = \alpha \overrightarrow {OA} + \beta \overrightarrow {OB} + \gamma \overrightarrow {OC} \). Nếu điểm \(M\) trùng với trọng tâm tam giác \(ABC\) thì các số \(\alpha \,,\beta \,,\gamma \) bằng bao nhiêu?
Trả lời (1)
-
Vì hai vec tơ \(\overrightarrow {CA} \,,\,\,\overrightarrow {CB} \) không cùng phương nên ta có các số \(\alpha \,,\,\,\beta \) sao cho \(\overrightarrow {CM} = \alpha \overrightarrow {CA} + \beta \overrightarrow {CB} \), hay là
\(\overrightarrow {OM} - \overrightarrow {OC} = \alpha (\overrightarrow {OA} - \overrightarrow {OC} ) + \beta (\overrightarrow {OB} - \overrightarrow {OC} ).\)
Vậy \(\overrightarrow {OM} = \alpha \overrightarrow {OA} + \beta \overrightarrow {OB} + (1 - \alpha - \beta )\overrightarrow {OC} .\)
Đặt \(\gamma = 1 - \alpha - \beta \) thì \(\alpha + \beta + \gamma = 1\) và \(\overrightarrow {OM} = \alpha \overrightarrow {OA} + \beta \overrightarrow {OB} + \gamma \overrightarrow {OC} \).
Nếu M trùng G thì ta có \(\overrightarrow {OG} = \dfrac{1}{3}(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} ).\)
Vậy \(\alpha = \beta = \gamma = \dfrac{1}{3}\).
bởi Mai Bảo Khánh 22/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời