YOMEDIA
NONE

Cho tam giác ABC có A(-2;3) và hai đường trung tuyến: \(2x - y + 1 = 0\) và \(x + y - 4 = 0\) . Hãy viết phương trình ba đường thẳng chứa ba cạnh của tam giác.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(BM:2x - y + 1 = 0\) và \(CN:x + y - 4 = 0\) là hai trung tuyến của tam giác ABC.

    Đặt \(B\left( {x;y} \right)\), ta có \(N\left( {\dfrac{{x - 2}}{2};\dfrac{{y + 3}}{2}} \right)\) và \(\left\{ \begin{array}{l}B \in BM\\N \in CN\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - y + 1 = 0\\\dfrac{{x - 2}}{2} + \dfrac{{y + 3}}{2} - 4 = 0\end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + y = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right.\)

    Vậy phương trình đường thẳng chứa cạnh AB là : \(2x - 4y + 16 = 0\)\( \Leftrightarrow x - 2y + 8 = 0\).

    Tương tự ta có phương trình đường thẳng chứa cạnh AC là : \(2x + 5y - 11 = 0\).

    Phương trình đường thẳng chứa cạnh BC là : \(4x + y - 13 = 0\).

      bởi Tường Vi 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON