YOMEDIA
NONE

Cho năm điểm trong đó không có ba điểm nào thẳng hàng. Gọi \(\Delta \) là một tam giác có ba đỉnh lấy trong năm điểm đó, hai điểm còn lại xác định một đoạn thẳng \(\theta \). Chứng minh rằng với các cánh chọn \(\Delta \) khác nhau, đường thẳng đi qua trọng tâm tam giác \(\Delta \) và trung điểm đoạn thẳng \(\theta \) luôn đi qua một điểm cố định.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(A, B, C\) là ba đỉnh của tam giác \(\Delta \) và \(DE\) là đoạn thẳng \(\theta \). Gọi \(G\) là trọng tâm tam giác \(\Delta \) và \(M\) là trung điểm của \(DE\)  thì với điểm \(I\) tùy ý, ta có

    \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  + \overrightarrow {IE} \)\( = 3\overrightarrow {IG}  + 2\overrightarrow {IM}\)

    Bởi vậy nếu chọn \(I\) là trọng tâm của hệ điểm \(A, B, C, D, E,\) tức là trọng tâm của hệ năm điểm đã cho thì \(I\) là điểm cố định và \(3\overrightarrow {IG}  + 2\overrightarrow {IM}  = \overrightarrow 0 \). Vậy các đường thẳng \(GM\) luôn luôn đi qua điểm \(I\) cố định (và \(I\) là điểm chia đoạn thẳng \(GM\) theo tỉ số \( - {2 \over 3}\)).

      bởi Nguyễn Anh Hưng 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON